跳至内容
- 来源:ACL 2019
- 机构:京东
- 任务:跨文档 MRC wikihop HotpotQA
- 方法:先从 candidate 和 query 里面抽实体,然后在 candidate & query,query & document,query & entity 之间做 co-attention,然后用 candidate node,doc node,entity node 建图,规则连图,RGCN 传播,最后用 candidate node 与其相关的 entity node 相加,分类求答案。如右图所示
- 感觉 DocRE 都是从这篇文章抄的
- 这里 co-attention 值得说一下,这篇文章是用 attention 得到一个 attention score 矩阵,然后用这个矩阵直接与两边的内容相乘,就是相当于将自己变成对方的长度(?)而不 aggregate


(当然,有一部分是 aggregate 的)
然后后面 aggregate 成一个 token 长度的,是通过句子做 self-attention 得到。我不理解为什么要这么麻烦,直接一次 attn-agg 不好吗?现在这样做有什么优点呢? - 关于连边,感觉也是比较有意思,可能是因为有三方了吧,这个以后实际设计模型的时候待参考
- an edge between a document node and a candidate node if the candidate appear in the document at least one time.
- an edge between a document node and an entity node if the entity is extracted from the document.
- an edge between a candidate node and an entity node if the entity is a mention of the candidate.
- an edge between two entity nodes if they are extracted from the same document.
- an edge between two entity nodes if they are mentions of the same candidate or query subject and they are extracted from different documents.
- all candidate nodes connect with each other.
- entity nodes that do not meet previous conditions are connected.
- 另外,这里的 GCN 有一个 gate 机制

一直想探寻清楚,这种显示的 gate 机制与那种隐式的残差链接,有什么区别呢?有什么优劣呢?